Introduction

This system is based upon the place value and face value of a digit in a number. We have learnt that a natural number can be written as the sum of the place values of all digits of the numbers. For example

3256 = 3 x 1000 + 2 x 100 + 5 x 10 + 6 x 1
Such a form of a natural number is known as its expanded form.

The expanded form of a number can also be expressed in terms of powers of 10 by using

\( {10}^{0} \) = 1, \( {10}^{1} \) = 10, \( {10}^{2} \) = 100, \( {10}^{3} \) = 1000 etc.
For example,

3256 = 3 x 1000 + 2 x 100 + 5 x 10 + 6 x 1
=>    3256 = 3 x \( {10}^{3} \) + 2 x \( {10}^{2} \) + 5 x \( {10}^{1} \) + 6 x \( {10}^{0} \)

Clearly, each digit of the natural number is multiplied by \( {10}^{n} \), where n is the number of digits to its right and then they are added.

Illustrative Examples

Example 1:    Write the following numbers in the expanded exponential forms:

(i) 32005    (ii) 56719    (iii) 8605192    (iv) 2500132
Solution.

(i) 32005 = 3 x \( {10}^{4} \) + 2 x \( {10}^{3} \) + 0 x \( {10}^{2} \) + 0 x \( {10}^{1} \) + 5 x \( {10}^{0} \)

(ii) 560719 = 5 x \( {10}^{5} \) + 6 x \( {10}^{4} \) + 0 x \( {10}^{3} \) + 7 x \( {10}^{2} \) + 1 x \( {10}^{1} \) + 9 x \( {10}^{0} \)

(iii) 8605192 = 8 x \( {10}^{6} \) + 6 x \( {10}^{5} \) + 0 x \( {10}^{4} \) + 5 x \( {10}^{3} \) + 1 x \( {10}^{2} \) + 9 x \( {10}^{1} \) + 2 x \( {10}^{0} \)

(iv) 2500132 = 2 x \( {10}^{6} \) + 5 x \( {10}^{5} \) + 0 x \( {10}^{4} \) + 0 x \( {10}^{3} \) + 1 x \( {10}^{2} \) + 3 x \( {10}^{1} \) + 2 x \( {10}^{0} \)

Example 2:    Find the number from each of the following expanded forms:

(i) 5 x \( {10}^{4} \) + 4 x \( {10}^{3} \) + 2 x \( {10}^{2} \) + 3 x \( {10}^{1} \) + 5 x \( {10}^{0} \)

(ii) 7 x \( {10}^{5} \) + 6 x \( {10}^{4} \) + 0 x \( {10}^{3} \) + 9 x \( {10}^{0} \)

(iii) 9 x \( {10}^{5} \) + 4 x \( {10}^{2} \) + 1 x \( {10}^{1} \)

Solution.

(i) 5 x \( {10}^{4} \) + 4 x \( {10}^{3} \) + 2 x \( {10}^{2} \) + 3 x \( {10}^{1} \) + 5 x \( {10}^{0} \)

= 5 x 10000 + 4 x 1000 + 2 x 100 + 3 x 10 + 5 x 1

= 50000 + 4000 + 200 + 30 + 5

= 54235

(ii) 7 x \( {10}^{5} \) + 6 x \( {10}^{4} \) + 0 x \( {10}^{3} \) + 9 x \( {10}^{0} \)

=  7 x 100000 + 6 x 10000 + 0 + 9 x 1

= 700000 + 60000 + 9

= 760009

(iii) 9 x \( {10}^{5} \) + 4 x \( {10}^{2} \) + 1 x \( {10}^{1} \)

= 9 x 100000 + 4 x 100 + 1 x 10

= 900000 + 400 + 10

= 900410